0 CpxTRS
↳1 RenamingProof (⇔, 0 ms)
↳2 CpxRelTRS
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 typed CpxTrs
↳5 OrderProof (LOWER BOUND(ID), 0 ms)
↳6 typed CpxTrs
↳7 RewriteLemmaProof (LOWER BOUND(ID), 750 ms)
↳8 BEST
↳9 typed CpxTrs
↳10 RewriteLemmaProof (LOWER BOUND(ID), 222 ms)
↳11 BEST
↳12 typed CpxTrs
↳13 RewriteLemmaProof (LOWER BOUND(ID), 167 ms)
↳14 BEST
↳15 typed CpxTrs
↳16 LowerBoundsProof (⇔, 0 ms)
↳17 BOUNDS(n^2, INF)
↳18 typed CpxTrs
↳19 LowerBoundsProof (⇔, 0 ms)
↳20 BOUNDS(n^2, INF)
↳21 typed CpxTrs
↳22 LowerBoundsProof (⇔, 0 ms)
↳23 BOUNDS(n^1, INF)
↳24 typed CpxTrs
↳25 LowerBoundsProof (⇔, 0 ms)
↳26 BOUNDS(n^1, INF)
sqr(0) → 0
sqr(s(x)) → +(sqr(x), s(double(x)))
double(0) → 0
double(s(x)) → s(s(double(x)))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
sqr(s(x)) → s(+(sqr(x), double(x)))
sqr(0') → 0'
sqr(s(x)) → +'(sqr(x), s(double(x)))
double(0') → 0'
double(s(x)) → s(s(double(x)))
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
sqr(s(x)) → s(+'(sqr(x), double(x)))
They will be analysed ascendingly in the following order:
+' < sqr
double < sqr
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
+', sqr, double
They will be analysed ascendingly in the following order:
+' < sqr
double < sqr
Induction Base:
+'(gen_0':s2_0(a), gen_0':s2_0(0)) →RΩ(1)
gen_0':s2_0(a)
Induction Step:
+'(gen_0':s2_0(a), gen_0':s2_0(+(n4_0, 1))) →RΩ(1)
s(+'(gen_0':s2_0(a), gen_0':s2_0(n4_0))) →IH
s(gen_0':s2_0(+(a, c5_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
double, sqr
They will be analysed ascendingly in the following order:
double < sqr
Induction Base:
double(gen_0':s2_0(0)) →RΩ(1)
0'
Induction Step:
double(gen_0':s2_0(+(n457_0, 1))) →RΩ(1)
s(s(double(gen_0':s2_0(n457_0)))) →IH
s(s(gen_0':s2_0(*(2, c458_0))))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
double(gen_0':s2_0(n457_0)) → gen_0':s2_0(*(2, n457_0)), rt ∈ Ω(1 + n4570)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
sqr
Induction Base:
sqr(gen_0':s2_0(0)) →RΩ(1)
0'
Induction Step:
sqr(gen_0':s2_0(+(n693_0, 1))) →RΩ(1)
+'(sqr(gen_0':s2_0(n693_0)), s(double(gen_0':s2_0(n693_0)))) →IH
+'(gen_0':s2_0(*(c694_0, c694_0)), s(double(gen_0':s2_0(n693_0)))) →LΩ(1 + n6930)
+'(gen_0':s2_0(*(n693_0, n693_0)), s(gen_0':s2_0(*(2, n693_0)))) →LΩ(2 + 2·n6930)
gen_0':s2_0(+(+(*(2, n693_0), 1), *(n693_0, n693_0)))
We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
double(gen_0':s2_0(n457_0)) → gen_0':s2_0(*(2, n457_0)), rt ∈ Ω(1 + n4570)
sqr(gen_0':s2_0(n693_0)) → gen_0':s2_0(*(n693_0, n693_0)), rt ∈ Ω(1 + n6930 + n69302)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
double(gen_0':s2_0(n457_0)) → gen_0':s2_0(*(2, n457_0)), rt ∈ Ω(1 + n4570)
sqr(gen_0':s2_0(n693_0)) → gen_0':s2_0(*(n693_0, n693_0)), rt ∈ Ω(1 + n6930 + n69302)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
double(gen_0':s2_0(n457_0)) → gen_0':s2_0(*(2, n457_0)), rt ∈ Ω(1 + n4570)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.